In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled Antenna array which creates a radio beam that can be electronically steered to point in different directions without moving the antennas.
In a phased array, the power from the transmitter is fed to the radiating elements through devices called , controlled by a computer system, which can alter the phase or signal delay electronically, thus steering the beam of radio waves to a different direction. Since the size of an antenna array must extend many wavelengths to achieve the high gain needed for narrow beamwidth, phased arrays are mainly practical at the high frequency end of the radio spectrum, in the UHF and microwave bands, in which the operating wavelengths are conveniently small.
Phased arrays were originally invented for use in military radar systems, to detect fast moving planes and missiles, but are now widely used and have spread to civilian applications such as 5G MIMO for cell phones. The phased array principle is also used in acoustics in such applications as phased array ultrasonics, and in optics.
The term "phased array" is also used to a lesser extent for unsteered in which the radiation pattern of the antenna array is fixed. Definition of Phased Array . Accessed 27 April 2006. For example, AM broadcast radio antennas consisting of multiple are also called "phased arrays".
In a simple array antenna, the radio frequency current from the transmitter is fed to multiple individual antenna elements with the proper phase relationship so that the radio waves from the separate elements combine (superpose) to form beams. This can be configured to increase power radiated in desired directions and suppress radiation in undesired directions.
In a phased array, the power from the transmitter is fed to the radiating elements through devices called , controlled by a computer system. The computer can alter the phase or signal delay of each antenna element electronically, resulting in a beam of radio waves that can be dynamically "steered" to propagate in arbitrary directions.
Phased arrays were originally conceived for use in military radar systems, to steer a beam of radio waves quickly across the sky to detect planes and missiles. These systems are now widely used and have spread to civilian applications such as 5G MIMO for cell phones. The phased array principle is also used in acoustics, and phased arrays of transducer are used in medical ultrasound imaging scanners (phased array ultrasonics), oil and gas prospecting (reflection seismology), and military sonar systems.
The term "phased array" is also used to a lesser extent for non steerable in which the phase of the feed power and thus the radiation pattern of the antenna array is fixed. Definition of Phased Array . Accessed 27 April 2006. For example, AM broadcast radio antennas consisting of multiple fed so as to create a specific radiation pattern are also called "phased arrays".
A passive phased array or passive electronically scanned array (PESA) is a phased array in which the antenna elements are connected to a single transmitter and/or radio receiver, as shown in the first animation at top. PESAs are the most common type of phased array. Generally speaking, a PESA uses one receiver/exciter for the entire array.
An active phased array or active electronically scanned array (AESA) is a phased array in which each antenna element has an analog transmitter/receiver (T/R) module
A digital beam forming (DBF) phased array has a digital receiver/exciter at each element in the array. The signal at each element is digitized by the receiver/exciter. This means that antenna beams can be formed digitally in a field programmable gate array (FPGA) or the array computer. This approach allows for multiple simultaneous antenna beams to be formed.
A hybrid beam forming phased array can be thought of as a combination of an AESA and a digital beam forming phased array. It uses subarrays that are active phased arrays (for instance, a subarray may be 64, 128 or 256 elements and the number of elements depends upon system requirements). The subarrays are combined to form the full array. Each subarray has its own digital receiver/exciter. This approach allows clusters of simultaneous beams to be created.
A conformal antenna is a phased array in which the individual antennas, instead of being arranged in a flat plane, are mounted on a curved surface. The phase shifters compensate for the different path lengths of the waves due to the antenna elements' varying position on the surface, allowing the array to radiate a plane wave. Conformal antennas are used in aircraft and missiles, to integrate the antenna into the curving surface of the aircraft to reduce aerodynamic drag.
A graduated attenuation window is sometimes applied across the face of the array to improve side-lobe suppression performance, in addition to the phase shift.
Time domain beamformer works by introducing time delays. The basic operation is called "delay and sum". It delays the incoming signal from each array element by a certain amount of time, and then adds them together. A Butler matrix allows several beams to be formed simultaneously, or one beam to be scanned through an arc. The most common kind of time domain beam former is serpentine waveguide. Active phased array designs use individual delay lines that are switched on and off. Yttrium iron garnet phase shifters vary the phase delay using the strength of a magnetic field.
There are two different types of frequency domain beamformers.
The first type separates the different frequency components that are present in the received signal into multiple frequency bins (using either a Discrete Fourier transform (DFT) or a filterbank). When different delay and sum beamformers are applied to each frequency bin, the result is that the main lobe simultaneously points in multiple different directions at each of the different frequencies. This can be an advantage for communication links, and is used with the SPS-48 radar.
The other type of frequency domain beamformer makes use of Spatial Frequency. Discrete samples are taken from each of the individual array elements. The samples are processed using a DFT. The DFT introduces multiple different discrete phase shifts during processing. The outputs of the DFT are individual channels that correspond with evenly spaced beams formed simultaneously. A 1-dimensional DFT produces a fan of different beams. A 2-dimensional DFT produces beams with a pineapple configuration.
These techniques are used to create two kinds of phased array.
There are two further sub-categories that modify the kind of dynamic array or fixed array.
Dynamic phased arrays require no physical movement to aim the beam. The beam is moved electronically. This can produce antenna motion fast enough to use a small pencil beam to simultaneously track multiple targets while searching for new targets using just one radar set, a capability known as track while search.
As an example, an antenna with a 2-degree beam with a pulse rate of 1 kHz will require approximately 8 seconds to cover an entire hemisphere consisting of 8,000 pointing positions. This configuration provides 12 opportunities to detect a vehicle over a range of , which is suitable for military applications.
The position of mechanically steered antennas can be predicted, which can be used to create electronic countermeasures that interfere with radar operation. The flexibility resulting from phased array operation allows beams to be aimed at random locations, which eliminates this vulnerability. This is also desirable for military applications.
In radar applications, this kind of phased array is physically moved during the track and scan process. There are two configurations.
The SPS-48 radar uses multiple transmit frequencies with a serpentine delay line along the left side of the array to produce vertical fan of stacked beams. Each frequency experiences a different phase shift as it propagates down the serpentine delay line, which forms different beams. A filter bank is used to split apart the individual receive beams. The antenna is mechanically rotated.
Semi-active radar homing uses monopulse radar that relies on a fixed phased array to produce multiple adjacent beams that measure angle errors. This form factor is suitable for gimbal mounting in missile seekers.
Active phased arrays do not require phase reset after the end of the transmit pulse, which is compatible with Doppler radar and pulse-Doppler radar.
The phase shift process used with passive phased arrays typically puts the receive beam and transmit beam into diagonally opposite quadrants. The sign of the phase shift must be inverted after the transmit pulse is finished and before the receive period begins to place the receive beam into the same location as the transmit beam. That requires a phase impulse that degrades sub-clutter visibility performance on Doppler radar and Pulse-Doppler radar. As an example, Yttrium iron garnet phase shifters must be changed after transmit pulse quench and before receiver processing starts to align transmit and receive beams. That impulse introduces FM noise that degrades clutter performance.
Passive phased array design is used in the AEGIS Combat System for direction-of-arrival estimation.
In 1966, most phased-array radars use ferrite phase shifters or traveling-wave tubes to dynamically adjust the phase. The AN/SPS-33 -- installed on the nuclear-powered ships Long Beach and Enterprise around 1961 -- was claimed to be the only operational 3-D phased array in the world in 1966. The AN/SPG-59 was designed to generate multiple tracking beams from the transmitting array and simultaneously program independent receiving arrays. The first civilian 3D phased array was built in 1960 at the National Aviation Facilities Experimental Center; but was abandoned in 1961. W. J. Evanzia. "Faster, lighter 3-D radars in sight for tactical warfare". Electronics. 1966. p. 81, 83, 87.
In 2004, Caltech researchers demonstrated the first integrated silicon-based phased array receiver at 24 GHz with 8 elements. This was followed by their demonstration of a CMOS 24 GHz phased array transmitter in 2005 and a fully integrated 77 GHz phased array transceiver with integrated antennas in 2006 by the Caltech team. In 2007, DARPA researchers announced a 16-element phased-array radar antenna which was also integrated with all the necessary circuits on a single silicon chip and operated at 30–50 GHz. World’s Most Complex Silicon Phased Array Chip Developed at UC San Diego in UCSD News (reviewed 2 November 2007)
The relative of—and constructive and destructive interference effects among—the signals radiated by the individual antennas determine the effective radiation pattern of the array. A phased array may be used to point a fixed radiation pattern, or to rapidly in azimuth or elevation. Simultaneous electrical scanning in both azimuth and elevation was first demonstrated in a phased array antenna at Hughes Aircraft Company, California in 1957.See Joseph Spradley, "A Volumetric Electrically Scanned Two-Dimensional Microwave Antenna Array," IRE National Convention Record, Part I Antennas and Propagation; Microwaves, New York: The Institute of Radio Engineers, 1958, 204–212.
Here, and are the directions which we are taking the array factor in, in the coordinate frame depicted to the right. The factors and are the progressive phase shift that is used to steer the beam electronically. The factors and are the excitation coefficients of the individual elements.
Beam steering is indicated in the same coordinate frame, however the direction of steering is indicated with and , which is used in calculation of progressive phase:
In all above equations, the value describes the wavenumber of the frequency used in transmission.
These equations can be solved to predict the nulls, main lobe, and grating lobes of the array. Referring to the exponents in the array factor equation, we can say that major and grating lobes will occur at integer solutions to the following equations:
This represents a coordinate frame whose axis is aligned with the array axis, and whose axis is aligned with the array axis.
If we consider a phased array, this process provides the following values for , when steering to bore-sight (,):
The AN/SPY-1 phased array radar, part of the Aegis Combat System deployed on modern U.S. cruisers and destroyers, "is able to perform search, track and missile guidance functions simultaneously with a capability of over 100 targets.". Likewise, the Thales Herakles phased array multi-function radar used in service with France and Singapore has a track capacity of 200 targets and is able to achieve automatic target detection, confirmation and track initiation in a single scan, while simultaneously providing mid-course guidance updates to the MBDA Aster missiles launched from the ship. The German Navy and the Royal Dutch Navy have developed the Active Phased Array Radar System (APAR). The MIM-104 Patriot and other ground-based antiaircraft systems use phased array radar for similar benefits.
One of first acoustic phased arrays was the German Gruppenhorchgerät device.
In acoustics, and of loudspeakers are also used.
Due to the short wavelengths OPAs are typically realised in nanofabricated photonic integrated circuit platforms utilising materials such as silicon on insulator, germanium on silicon, silicon nitride or polymers.
Synthetic array heterodyne detection is an efficient method for multiplexing an entire phased array onto a single element photodetector.
Phased arrays are used by many AM broadcasting radio stations to enhance signal strength and therefore coverage in the city of license, while minimizing interference to other areas. Due to the differences between daytime and nighttime ionosphere propagation at mediumwave frequencies, it is common for AM broadcast stations to change between day (groundwave) and night (skywave) radiation patterns by switching the phase and power levels supplied to the individual antenna elements () daily at sunrise and sunset. For shortwave broadcasts many stations use arrays of horizontal dipoles. A common arrangement uses 16 dipoles in a 4×4 array. Usually this is in front of a wire grid reflector. The phasing is often switchable to allow beam steering in azimuth and sometimes elevation.
|
|